Essential role for autophagy in life span extension
نویسندگان
چکیده
منابع مشابه
Sir2 Blocks Extreme Life-Span Extension
Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homol...
متن کاملMurine models of life span extension.
Mice are excellent experimental models for genetic research and are being used to investigate the genetic component of organismal aging. Several mutant mice are known to possess defects in the growth hormone/insulin-like growth factor 1 (GH/IGF-1) neurohormonal pathway and exhibit dwarfism together with extended life span. Their phenotypes resemble those of mice subjected to caloric restriction...
متن کاملHeat stress-induced life span extension in yeast.
The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently ea...
متن کاملCocoa confers life span extension in Drosophila melanogaster.
Cocoa is thought to be an excellent source of antioxidants. Here, we investigated the effects of cocoa supplementation on Drosophila melanogaster life span under different oxidative stress conditions. Our results illustrate that a moderate supplementation of cocoa under normoxia increases the average life span, whereas, at higher concentrations, average life span is normal. Under hyperoxia or i...
متن کاملSir2-Independent Life Span Extension by Calorie Restriction in Yeast
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Clinical Investigation
سال: 2015
ISSN: 0021-9738
DOI: 10.1172/jci73946